Fluid-structure coupled computations of the NREL 5MW wind turbine blade during standstill

نویسندگان

  • B. Dose
  • H. Rahimi
  • I. Herráez
  • B. Stoevesandt
  • J. Peinke
چکیده

This work is aimed at investigating the aero-elastic behavior of a wind turbine blade subjected to strong wind speeds during standstill. This type of investigation still remains a challenge for most wind turbine simulation codes. For this purpose, a new developed high fidelity framework for fluid-structure coupled computations of wind turbines is presented and numerical simulations are conducted on the NREL 5MW reference wind turbine. The framework couples the open-source Computational Fluid Dynamics (CFD) toolbox OpenFOAM with an in-house beam solver, based on the Geometrically Exact Beam Theory (GEBT). The obtained results are compared to the aero-elastic tool FAST, which is based on the Blade Element Momentum theory (BEM) and can be considered as a state-of-the-art wind turbine simulation code. The evaluation of the fluid-structure coupled CFD simulations reveals clear differences in the results compared to FAST. While the mean deflections show a reasonable agreement, the dynamics of the edgewise deflections differ significantly. Furthermore, the effect of an explicit coupling versus an implicit coupling strategy on the results is investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...

متن کامل

Effect of Platform Surge Motion on the Performance of 5MW NREL Offshore Floating Wind Turbine

In this study, an unsteady aerodynamic simulation is performed to realize the influences of platform surge motion on the aerodynamic performance of a high capacity offshore floating wind turbine. A dynamic model with pitch angle control system is utilized to propose a more realistic model of wind turbine and also achieve the rated condition of the rotor. The transient effect of platform surge m...

متن کامل

Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. R...

متن کامل

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016